cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression.

نویسندگان

  • Xue-Jun Song
  • Zheng-Bei Wang
  • Qiang Gan
  • Edgar T Walters
چکیده

Numerous studies have implicated the cAMP-protein kinase A (PKA) pathway in producing hyperexcitability of dorsal root ganglia (DRG) sensory neurons under conditions associated with pain. Evidence is presented for roles of both the cAMP-PKA and cGMP-protein kinase G (PKG) pathways in maintaining neuronal hyperexcitability and behavioral hyperalgesia in a neuropathic pain model: chronic compression of the DRG (CCD treatment). Lumbar DRGs were compressed by a steel rod inserted into the intervertebral foramen. Thermal hyperalgesia was revealed by shortened latencies of foot withdrawal to radiant heat. Intracellular recordings were obtained in vitro from lumbar ganglia after in vivo DRG compression. Activators of the cAMP-PKA pathway, 8-Br-cAMP and Sp-cAMPS, and of the cGMP-PKG pathway, 8-Br-cGMP and Sp-cGMPS, increased the hyperexcitability of DRG neurons already produced by CCD treatment, as shown by further decreases in action potential threshold and increased repetitive discharge during depolarization. The adenylate cyclase inhibitor, SQ22536, the PKA antagonist, Rp-cAMPS, the guanylate cyclase inhibitor, ODQ, and the PKG inhibitor, Rp-8-pCPT-cGMPS, reduced the hyperexcitability of CCD DRG neurons. In vivo application of PKA and PKG antagonists transiently depressed behavioral hyperalgesia induced by CCD treatment. Unexpectedly, application of these agonists and antagonists to ganglia of naïve, uninjured animals had little effect on electrophysiological properties of DRG neurons and no effect on foot withdrawal, suggesting that sensitizing actions of these pathways in the DRG are enabled by prior injury or stress. The only effect observed in uncompressed ganglia was modest depolarization of DRG neurons by PKA and PKG agonists. CCD treatment also depolarized DRG neurons, but CCD-induced depolarization was not affected by agonists or antagonists of these pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cAMP and cGMP Contribute to Sensory Neuron Hyperexcitability and Hyperalgesia in Rats with Dorsal Root Ganglia Compression Abbreviated Title: cAMP and cGMP effects following DRG compression

Numerous studies have implicated the cAMP-protein kinase A (PKA) pathway in producing hyperexcitability of dorsal root ganglia (DRG) sensory neurons under conditions associated with pain. Evidence is presented for roles of both the cAMP-PKA and cGMP-protein kinase G (PKG) pathways in maintaining neuronal hyperexcitability and behavioral hyperalgesia in a neuropathic pain model: chronic compress...

متن کامل

Activation of cGMP-PKG signaling pathway contributes to neuronal hyperexcitability and hyperalgesia after in vivo prolonged compression or in vitro acute dissociation of dorsal root ganglion in rats.

Injury or inflammation affecting sensory neurons in the dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spinal central sensitization and neuropathic pain. Recent studies have indicated that, following chronic compression of DRG (CCD) or acute dissociation of DRG (ADD) treatment, both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperal...

متن کامل

Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP.

Injury or inflammation affecting sensory neurons in dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spontaneous firing and neuropathic pain. Recent results indicate that after chronic compression of DRG (CCD treatment), both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperalgesia are maintained by concurrent activity in cAMP-protein ...

متن کامل

Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat.

A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia and allodynia in rats. Intracellular electrophysiological recordings from formerly compressed neurons in the intact dorsal root ganglion (DRG) reveal lower than normal current thresholds (CTs) and abnormal spontaneous activity (SA) (Zhang JM, Song XJ, LaMotte RH. Enhanced excitability of sensory ...

متن کامل

Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2.

Chronic compression (CCD) or dissociation of dorsal root ganglion (DRG) can induce cyclic adenosine monophosphate (cAMP)-dependent DRG neuronal hyperexcitability and behaviorally expressed hyperalgesia. Here, we report that protease-activated receptor 2 (PAR2) activation after CCD or dissociation mediates the increase of cAMP activity and protein kinase A (PKA) and cAMP-dependent hyperexcitabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2006